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Seventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell
respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been
recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of ob-
servations, and the variable subcellular location of a number of its constitutive protein components is now well
recognized, although yet unexplained. Nonetheless, themost striking observations have beenmade in the recent
period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs
cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent
advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and
human pathology.

© 2014 Elsevier B.V. All rights reserved.
1. Krebs cycle(s)

As depicted by Hans Adolf Krebs before the SecondWorld War, the
mitochondrial catabolism of organic acids is structured around a one-
piece cycle, the so-called tricarboxylic acid cycle, also known as the
Krebs cycle [1]. However, this proposal should be reexamined to take
into account the kinetic split that isolates two segments in the cycle
in vivo (Fig. 1) [2]. The occurrence of a shortcut resulting from the trans-
amination reaction catalyzed by the aspartate aminotransferase actually
allows the two independent segments to function at different rates. This
entanglement links amino and organic acid catabolism and confers a
key function to the glutamate/aspartate couple in controlling the overall
kinetic of Krebs cycle acids (KCA) conversion. An additional level of
complexity results from the subcellular distribution of Krebs cycle pro-
tein components. While all Krebs cycle enzymes are found in the mito-
chondrial matrix, a subset of these enzymes are also found, variably
according to tissues, in the cytosol with yet unknown functions in
most cases [3]. The subcellular compartmentation of the enzymes is
combined with a discriminating permeability of the mitochondrial
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inner membrane towards each KCA [4]. In response to adverse condi-
tions, part of the Krebs cycle enzymes may also functionally associate
with additional enzymes. Thus, the α-ketoglutarate dehydrogenase
using the NAD+ generated by the mitochondrial diaphorases may pro-
vide succinyl CoA to the succinyl CoA ligase, allowing for an ATP gener-
ation in the case of respiratory chain complex I blockade [5]. Hence, it is
probably wise to consider that the organization and function of the
Krebs cycle is not unique and static but is modulated to fit the fluctuat-
ing metabolic demand of each cell type.

To ensure this flexibility, a set of genes encoding the components of
the cycle is available in the human genome. Both concerted and individ-
ual regulations have been reported to modulate the expression of these
genes, making use of the full panoply of regulatory processes, including
control by miRNAs with indirect (e.g., miR-378 through PGC-1β) [6] or
direct (e.g., miR-183 on IDH2) [7] actions on the members of the Krebs
cycle [8].

Flux through the Krebs cycle is determined by both enzyme activi-
ties and substrate concentrations. Except under peculiar conditions, in-
cluding skeletal muscle under intensive exercise, the capacity of the
Krebs cycle enzymes exceeds the need as does the respiratory chain,
allowing to face variable feeding of substrates and variable cell energetic
demand [9,10].

The handling of the KCAwithin themitochondria is not independent
of the cytosolic fate of these acids. The activemalate–aspartate shuttle is
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Fig. 1. A schematized view of the Krebs cycle(s) emphasizing the respective size of cycle(s) components and their arrangement as metabolons. Large white circles indicate different met-
abolic fluxes observed through Krebs cycle segments. The acetylCoA and the glutamate inputs are also indicated in white. The active, polymeric forms of enzymes are depicted with the
corresponding molecular weights predicted from the human amino acid sequences (human mitochondrial protein database; http://bioinfo.nist.gov/hmpd/) after presequence cleavage.
Protein structures and other data are derived from the RCSB PDB-101 (protein data base; http://www.rcsb.org/pdb/). Inset: The metabolon build from the Krebs cycle components as
proposed by P. Srere in 1987 [67]. Abbreviations: AAT, aspartate aminotransferase (EC 2.6.1.1); Aco, aconitase (EC 4.2.1.3); CS, citrate synthase (EC 2.3.3.1); Fum, fumarate hydratase
(EC 4.2.1.2); GDH, glutamate dehydrogenase (EC 1.4.1.2); IDH, isocitrate dehydrogenase (EC 1.1.1.41);αKDH (αKGDC),α-ketoglutarate dehydrogenasemultienzyme complex (multiple
copies of EC 1.2.4.2, EC 2.3.1.61 and EC 1.8.1.4); MDH, malate dehydrogenase (EC 1.1.1.37); PDH (PDC), pyruvate dehydrogenase multienzyme complex (multiple copies of EC 1.2.4.1, EC
2.3.1.12 and EC 1.8.1.4); Succ CoA synthase (STK), succinyl CoA synthase (EC 6.2.1.5); SDH, succinate dehydrogenase (EC 1.3.5.1).
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widely admitted to act as a transfer mechanism for reduced equivalents
frommitochondrialmatrix NADH to cytosolic NAD+ [11]. However, tak-
ing into account the newly described roles of KCA in the cytosol, their
proper distribution in the cytosol ensured by this shuttle is presumably
of crucial importance as well. There is actually, outside of mitochondria,
a plethora of targets for KCA, possibly acting as primary substrates,
signal molecules or actors of post-translational modifications (PTMs).

2. Krebs cycle acids and post-translational modifications

PTMs include the acetyl-CoA-dependent acetylation of either the
N-terminus or at protein lysine residues [12–14]. Proteins can be also
modified by succinylation whereby a succinyl group (–CO-CH2-CH2-
CO–), presumably from succinyl-CoA, is added to a lysine residue
(Fig. 2, bottom right) [15]. Both acetylation and succinylation of lysine
residue modify the charge (from 1 to −1) with more steric hindrance
in the case of succinylation. Because of this, succinylation is expected
to more readily affect protein properties. In term of cellular targets,
lysine modification, including acetylation and succinylation, possibly
regulates numerous eukaryotic proteins involved in metabolism, cell
cycle, aging, growth, angiogenesis and cancer [14], making PMTs identi-
fication an active field in proteomics research [16]. In particular, SOD1
protein is subjected to succinylation, and this appears as a critical factor
for growth of lung tumor cells, an effect counterbalanced by SIRT5-
dependent de-succinylation of the enzyme [17]. However, low levels
of lysine succinylation are observed in eukaryotic cells and many
possibly crucial sites remain unidentified. [15]. Mitochondrial matrix
proteins can also bemodified via a widely spread non-enzymatic acyla-
tion, dependent on the pH of the mitochondrial matrix and the actual
concentration of acyl-CoA inside the mitochondria [18]. The presence
of three matrix-located sirtuins (SIRT 3-5) with NAD+-dependent
deacetylase activity further suggests an essential role of mitochondrial
protein acetylation in metabolism regulation [19,20].

The PTMs of histones are known to have a general impact on gene
expression and DNA repair. Succinylation is one among these PTMs,
with thirteen lysine succinylation sites described in HeLa cells so far,
thus linking Krebs cycle metabolites to histone biology [21]. Cysteine
is another residue that can undergo PTMs by a Michael addition
(Fig. 2, top). During this reaction, one fumarate is added to the thiol
group of a cysteine to form an S-(2-succinyl) cysteine [22]. An aberrant
succination of proteins by fumarate has been observed in hereditary
leiomyomatosis and renal cell cancer (HLRCC) syndrome associated
with germ line mutations in the FH gene [23]. In particular, the
succination of the KEAP1 protein results in the stabilization of the
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Fig. 2. Examples of proteinmodification involving Krebs cyclemetabolites. Bottom: Acetylation resulting from acetyl CoA addition (left) and succinylation by succinyl CoA (right) on lysine
residue; Top: Succination resulting from fumarate addition on cysteine residue.
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transcription factor NRf2, causing the activation of a series of genes in-
volved in the stress response [24–26]. Succination has also been sug-
gested to play an important role in obesity and diabetes [27], where
the degree of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
succination correlates with the inactivation of the enzyme [28].

3. Krebs cycle acids and their receptors

Succinate and α-ketoglutarate bind to two of the more than 800 G
protein-coupled receptors on the plasma membrane of a kidney
cell, GPR91 or SUCNR1 (succinate receptor 1) and GPR99 or OXGR1
(oxoglutarate receptor 1), respectively [29,30]. So far, however, physio-
logical roles have been attributed only to SUCNR1, also expressed in reti-
nal pigment epithelium [31], cardiomyocytes [32], blood cells [33], liver
[34] andwhite adipose tissue [35]. Inwhite adipose tissue, while stimula-
tory G-proteins favor lipolysis in response to low glucose level, when glu-
cose is high, the SUCNR1 signaling reduces lipolysis [35] by decreasing
adenylate cyclase-dependent cAMP formation. In cardiomyocytes, the
succinate-activated SUCNR1 increases the activity of the protein kinase
A and intra-cellular calcium affecting cell contraction, while a prolonged
exposure of cardiomyocytes to succinate triggers apoptotic processes
[36]. In the liver, SUCNR1, expressed exclusively in quiescent stellate
cells, has been suggested to act as an early detector of hepatic stress or
damage, enhancing the initial steps of stellate cell activation to restore
damaged tissue in the ischemic liver [30,37]. SUCNR1 is also present in
blood (hematopoietic precursor cells and many subtypes of blood and
immune cells) (Fig. 3A) where it would modulate platelets aggregation
and cell proliferation [33]. In retinal ganglion neurons (Fig. 3B), SUCNR1
appears to control the vascularization of the retina through VEGF [38].
In mouse kidney (Fig. 3C), SUCNR1 exerts a signaling effect in the neph-
ron through nitric oxide and prostaglandin E2 release, favoring the excre-
tion of renin from the granular cells of the juxtaglomerular apparatus [39].
This uncovers (in rodents) a role for succinate and SUCNR1 in the control
of the glomerular hyper-filtration and the renal renin–angiotensin
system. Accordingly, high succinate has been incriminated as a cause of
hypertension, obesity and diabetes in rodents [39]. High succinate was
however not detected in human suffering similar conditions. In a number
of contexts, the exact role of SUCNR1 activation by succinate is still to be
firmly established, but it appears that succinate and its receptors are fre-
quently at work under stress conditions (ischemia, hypoxia, metabolic
syndrome, diabetes, etc.). It can thus be hypothesized that the receptor
acts as a sensor for the “stress-signalingmetabolite” succinate,which con-
centration inversely varies with oxygen concentration, increasing with
hypoxia and during exercise, or under various disease conditions [30].

4. Krebs cycle acids, hydroxylases and demethylases

In the cytosol, α-ketoglutarate and succinate can also be channeled
to a class of specific non-heme iron oxygenases, the so-called Fe(II)/α-
ketoglutarate-dependent dioxygenases. This family of enzymes
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Fig. 3. Examples of succinate receptor SUCNR1 (GPR91) implication in stress response in various tissues. (A) Upon impairment of mitochondrial activity of kidney tubular cells by various
type of stresses, released succinate binds to SUCNR1 increasing cell calciumwhich activates cyclo-oxygenase 1,2 (COX 1,2) and endothelial nitric oxide synthase (eNOS). This triggers the
secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) thatwill promote the release of renin from neighboring granular cells of the juxtaglomerular apparatus [68]. (B) Vascular dam-
ages consecutive to diabetes condition (1) tend to favor retinal hypoxia (2)which results in succinate release by photoreceptor cells (3). Upon succinate binding to the SUCNR1of ganglion
cells (4), released proangiogenic factors (5) promote anarchic blood vessel growth characteristic of diabetic retinopathy [31]. On the other hand, deficiency of the receptor has also been
shown recently to result in outer retinal lesion [69]. (C) Binding of succinate released by damaged tissues (1) on SUCNR1 receptor of innate dendritic cells (2) may induce activation of
immune cells and production of inflammatory cytokines (3) [70]. Similar results can be triggered by nucleic acid (1′) released from damaged tissues through Toll-like receptors presents
as well on these cells (2′).
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uses molecular oxygen to oxidize a primary substrate together with α-
ketoglutarate to form succinate and CO2. Because these enzymes are
subject to product inhibition by succinate, their activity is largely
dependent on the relative ratio of α-ketoglutarate to succinate. The in-
hibition of these enzymes by product accumulation has beenpinpointed
as the instrumental mechanism linking succinate dehydrogenase and
fumarate hydratase deficiencies to tumor formation and carcinogenesis
in human [40,41]. Two of these dioxygenases appear critically involved
in these processes, namely, the one responsible for the hydroxylation of
the HIF1α transcription factor and those involved in the control of
histone and DNA demethylation.

The transcription factor HIF1 consists of two subunits: HIF1α, an
oxygen-sensitive subunit, andHIF1β, a constitutively expressed subunit
[42]. HIF1 binds the 5′-RCGTG-3′ consensus sequence foundwithin or in
the vicinity of themore than 1,000HIF1-regulated genes. The stability of
the HIF1α subunit is negatively regulated by oxygen, as is HIF2α, a sec-
ond factor susceptible to interact with HIF1β [43]. At variance with
HIF1α that is expressed in all cell types, HIF2α is expressed in a subset
of human cell types, including vascular endothelial cells, hepatocytes,
type II pneumocytes and macrophages [44]. In a number of cancer
cells, both HIF1α and HIF2α proteins are expressed. Notwithstanding
an extensive sequence homology, HIF1α and HIF2α have non-
overlapping and sometimes even opposing roles [45]. Under normoxic
conditions, providedα-ketoglutarate is available, HIF1α is hydroxylated
by a prolyl hydroxylase at conserved proline residues (Pro-403 or Pro-
564 in humanHIF1α). This allowsHIF1α recognition and ubiquitination
by the vonHippel–Lindau (VHL)/E3 ubiquitin ligase and its rapid degra-
dation by the proteasome (Fig. 4). As the prolyl hydroxylase requires
molecular oxygen, the reaction is decreased under hypoxic conditions,
resulting inHIF1α stabilization. The accumulation of succinate resulting
from a succinate dehydrogenase deficiency causes a similar decrease of
the enzyme activity leading to HIF1α stabilization [40,46]. Noticeably,
the accumulation of the structurally related fumarate molecule
resulting from a fumarate hydratase defect also causes the inhibition
of the prolyl hydroxylase reaction [47]. When stabilized, HIF1α up
regulates a number of the genes insuring cell resistance to low-
oxygen conditions. Thus, even under normoxic conditions, succinate ac-
cumulation up regulates a similar set of genes, especially those involved
in the vascularization and facilitated oxygen distribution in tissues, as
vascular endothelial growth factor (VEGF) [48]. Controlled by HIF1 sta-
bilization, this angiogenesis provides favorable conditions for tumor
growth and carcinogenesis. Accordingly, germ line loss-of-function
mutations in the four genes encoding subunits A-D or assembly
factor (SDHAF2) of the SDH cause hereditary paraganglioma/

image of Fig.�3


Fig. 4. The control of prolyl hydroxylase activity by organic acids. The continuous degradation of theHIF1α protein by the proteasome (left) is dependent on its ubiquitination by a protein
complex (VHL, eBC, Cul2 and Rbx1; top). This ubiquitination is made possible by the initial oxygen-dependent hydroxylation of the HIF1α protein by the prolyl hydroxylase. Under an-
aerobic conditions, the HIF1α protein translocates to the nucleus where it participates with HIF1β and p300/CBP proteins in the transcriptional activation of a set of genes possessing the
hypoxia response element (HRE; bottom). Becauseα-ketoglutarate and succinate are respectively substrate and product of the prolyl hydroxylase, the activity of this latter enzyme is de-
pendent in vivo on the respective concentrations of these two Krebs cycle acids [41]. Abbreviations: HIF, hypoxia-inducible factor; eBC, ElonginB/C; VHL, Von Hippel–Lindau; Cul2, CULLIN
2; Rbx1, RING-box protein 1).
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pheochromocytoma syndrome (HPGL/PCC), and these genes are now
recognized as tumor suppressor genes [49–51]. The stabilization of
HIF1 resulting from KCA accumulation provides a first mechanism
linking tumoral processes and the balance between Krebs cycle inter-
mediates, α-ketoglutarate, succinate and fumarate.

More recently described DNA alterations in tumors related to Krebs
cycle enzyme defect led to the identification of demethylases as
additional targets for KCA and their derivative (R-2-hydroxyglutarate).
The observed abnormalmethylation of DNA, with an overall hypomethy-
lation of genes and hypermethylation of CpG islands, is a recognized hall-
mark of cancer, causing transcriptional silencing of a series of tumor
suppressor genes [52,53]. In 2011, a hypermethylation of CpG islands
[54] has been linked to gain-of-function mutations in IDH1 and IDH2
[55]. IDH mutations are responsible for diffuse and anaplastic gliomas
and secondary glioblastomas, specific types of cartilaginous tumors and
leukemias [56]. These oncogenic gain-of-function mutations cause the
IDH enzymes to produce (R)-2-hydroxyglutarate from α-ketoglutarate
[57]. The 2-hydroxyglutarate acts as a competitive inhibitor of α-
ketoglutarate-dependent histone demethylases and of the TET family
of 5-methyl-cytosine hydroxylases (Fig. 5). The production of 2-
hydroxyglutarate thus results in alterations of the overall DNA methyl-
ation in the patient tumoral tissues [54]. Similar targeting of histone and
DNA demethylases by accumulated succinate or fumarate has been
shown to account for the hypermethylation phenotype observed in
paragangliomas/pheochromocytomas resulting from SDH and FH gene
mutations [58]. Thus, succinate, fumarate and (R)-2-hydroxyglutarate
are now referred to as “oncometabolites”.
5. Krebs cycle acids and differentiations

Finally, by changing the activity of several metabolic pathways, KCA
might be important players among factors promoting and regulating
differentiation processes. For example, citrate exported from the
mitochondria has been shown to favor lipid synthesis, with a number
of consequences on cell fate [59]. The cellular citrate concentration is
presumably of crucial importance in a number of instances [59]. In
keepingwith this, while investigating themetabolic enzyme equipment
of stem cells, we recently observed that the activity of the couple
aconitases/isocitrate dehydrogenases determining cellular citrate con-
centration profoundly differs between mesenchymal and neural stem
cells (Fig. 6). This observation echoes the metabolic alterations known
to underlie differentiation of mesenchymal cells into functional osteo-
blasts, which are dependent on a change from glycolytic to oxidative
metabolism [60], and the fine tuning of the activity of the Krebs cycle
enzymes [48]. Likewise, the changes in gene expression observed dur-
ing the maturation of mouse 3T3L1 cells to adipocytes or the differenti-
ation of the parasite Toxoplasma gondii have been ascribed to histone
succination, acetylation, [61,62] and succinylation [63], respectively. Fi-
nally, PTMs, including acetylation and methylation, are now recognized
as key factors regulating the pluripotency of human stem cells [64,65].
6. Concluding remarks

Through this short overview of the many functions now recognized
to organic acids of the Krebs cycle, it appears that we actually deal with
major actors of numerous aspects of cell life. More than the traditional
view of their role as reducing power sinks for the respiratory chain
and providers of carbon skeletons for anabolism, KCA now appears to
be important signaling molecules and instrumental actors for the regu-
lation of gene expression. There is possiblymore to learn about the new
and unexpected functions of this “old team” of actors. However, their
implication in the remodeling of cells under pathological conditions is
now firmly established, e.g., cancer [66]. Likewise, considering the na-
ture of the mechanism pinpointed through the studies of cancer cells
and tissues, i.e., the effect of KCA on key enzymes controlling signaling
cascade(s) and gene expression, one is led to admit that thismechanism
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Fig. 5. Histone demethylase and DNA hydroxylase as targets of organic acids. Both di-oxygenase-catalyzed reactions use α-ketoglutarate and succinate as substrate and product, respec-
tively, implicating control of their reaction rates by the respective concentrations of these acids, or by any interfering acids, e.g., hydroxyglutarate produced by mutant IDH enzymes. The
histone demethylase reaction (top) modulates the variable methylation (top left) of lysine residues of the histone protein. The hydroxylase of the TET family (bottom) modulates the
methylation of the DNA cytosine residue resulting in variable oxidation products (bottom right). Changes in the activity of these two dioxygenases triggered by succinate or
hydroxyglutarate accumulation resulting from SDH or IDH mutations, respectively, have been shown to modulate the transcriptional activity of a set of genes and to be instrumental
for tumor formation [54,58].
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is presumably at work under non-pathological conditions as well. By
similar mechanisms, organic acids of the Krebs cycle would not only
control pathological remodeling but also direct physiological modeling.
This finally closes the loop involving genes, non-coding RNAs, proteins
andnowmetabolites in the interplay ensuringproper organismal devel-
opment and adaptation.
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Fig. 6. Stem cell differentiation is accompanied by a profound modification of Krebs cycle
enzyme activity. Upon the derivation from human-induced pluripotent stem cells (iPSCs),
the enzyme equipment controlling Krebs cycle acids, i.e., aconitase and isocitrate dehydro-
genase (IDH), strongly diverges betweenmesenchymal andneural stems cells, resulting in
a 7-fold difference in activity ratios. Numbers along the traces are nmol/min/mg prot.
Enzyme activity measured as previously described [71].
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