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A B S T R A C T   

Succinate dehydrogenase complex II inhibitors (SDHIs) are widely used fungicides since the 1960s. Recently, 
based on published in vitro cell viability data, potential health effects via disruption of the mitochondrial res
piratory chain and tricarboxylic acid cycle have been postulated in mammalian species. As primary metabolic 
impact of SDH inhibition, an increase in succinate, and compensatory ATP production via glycolysis resulting in 
excess lactate levels was hypothesized. To investigate these hypotheses, genome-scale metabolic models of Rattus 
norvegicus and Homo sapiens were used for an in silico analysis of mammalian metabolism. Moreover, plasma 
samples from 28-day studies with the SDHIs boscalid and fluxapyroxad were subjected to metabolome analyses, 
to assess in vivo metabolite changes induced by SDHIs. 

The outcome of in silico analyses indicated that mammalian metabolic networks are robust and able to 
compensate different types of metabolic perturbation, e.g., partial or complete SDH inhibition. Additionally, the 
in silico comparison of rat and human responses suggested no noticeable differences between both species, 
evidencing that the rat is an appropriate testing organism for toxicity of SDHIs. Since no succinate or lactate 
accumulation were found in rats, such an accumulation is also not expected in humans as a result of SDHI 
exposure.   

1. Introduction 

Succinate dehydrogenase inhibitor (SDHI) fungicides have been used 
worldwide for over 30 years for controlling plant diseases and to over
come fungal resistance to older technologies. 

The enzyme succinate dehydrogenase (SDH, or succinate ubiquinone 
oxidoreductase) is part of the mitochondrial electron transport chain 
(here termed “complex II”), as well as a component of the tricarboxylic 
acid (TCA) cycle (Hederstedt, 2003). SDH is involved in intermediary 
metabolism and energy production of eukaryotic cells and of bacteria 
under aerobic conditions. Moreover, SDH is important for control of the 
hypoxia response (Koziel and Jarmuszkiewicz, 2017). SDH couples the 
oxidation of succinate to fumarate (in the mitochondrial matrix) to the 
reduction of ubiquinone (in the mitochondrial inner membrane). SDHI 
pesticides belonging to the chemical class of carboxamides inhibit ubi
quinone reduction by reversible binding to the ubiquinone binding site 

(Qp site) of the fungal SDH (Scalliet et al., 2012). 
In humans, germline mutations of SDH resulting in life-long 

decreased enzymatic activity have been associated with accumulation 
of succinate and the occurrence of rare neoplasia and neurodegenerative 
diseases (Rasheed and Tarjan, 2018). In this context, recent concerns 
about the safety of SDHI agrochemical fungicides have been raised by 
Bénit et al. (2019). They demonstrated the potential of SDHI fungicides 
to inhibit the human SDH enzyme. Moreover, in skin fibroblast cell 
culture experiments with two SDHI fungicides, the authors observed 
reduced cell viability if cells were additionally deprived of glucose, 
pyruvate and uridine, and interpreted the reduced cell viability to reflect 
impaired mitochondrial function. Since cultured cells produce ATP 
mainly through glycolysis and not from mitochondrial oxidative phos
phorylation, no evidence for impaired cell viability was observed under 
standard cell culture conditions with 25 mM glucose present in the cell 
culture medium; viability experiments carried out at more physiological 
glucose concentrations (ca. 5 mM) were not carried out or not reported. 
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In view of the inherent limitations of cell culture experiments to 
study mitochondrial function under physiological conditions, animal 
studies may be a more reliable basis to assess if SDHI fungicide exposure 
cause adverse health outcomes in humans via SDH inhibition. Under 
physiological conditions, theoretical consequences of induced enzyme 
inhibition can often be circumvented or compensated by alternative 
metabolic pathways, thereby maintaining cell or tissue homeostasis. 
Therefore, such in vivo studies integrate all metabolic pathways that may 
be impacted in complete organisms versus observation of isolated effects 
in in vitro experiments that are limited in the capability to model 
physiological conditions at tissue and more so at organism level. 

For SDHI fungicides a comprehensive set of OECD guideline 
compliant toxicological studies is available that forms the basis for 
approval by regulatory authorities. This toxicological data package in
cludes investigation of changes for a defined set of clinical chemistry 
parameters (such as cholesterol, albumin, triglycerides, glucose, certain 
liver enzymes, etc.) in experimental animals. A comprehensive deter
mination of endogenous metabolites (such as carbohydrates, amino 
acids, nucleic acids or fatty acids and their derivates) from biochemical 
pathways is, however, beyond the scope of regulatory studies. 

A technology capable of investigating a broad range of endogenous 
metabolites and thus changes in the underlying biochemical pathways is 
metabolomics (Lindon et al., 2004; Viant et al., 2019). At BASF, we have 
used LC-MS- and GC-MS-based metabolomics to investigate changes in 
plasma metabolites induced by repeated treatment of rats over 28 days 
with more than 1000 toxicologically well-understood (agro-)chemicals 
and pharmaceuticals in standardized studies, thereof also two SDH 
inhibiting compounds (Boscalid and Fluxapyroxad). This comprehen
sive metabolomic assessment resulted in the database MetaMap®Tox 
which can be used to predict the toxicity of new compounds, and 
potentially identify toxicological modes of action based on 
toxicity-specific metabolic patterns. A large number of studies has 
demonstrated robustness and reliability of the methodology (Kamp 
et al., 2012a,b; Mattes et al., 2014; Mellert et al., 2011; Montoya et al., 
2014; Strauss et al., 2009, 2012, van Ravenzwaay et al., 2007, 2012). 

In order to explore the potential consequences of SDH inhibition on 
cell metabolism even further, the in vivo metabolome studies were 
complemented by an in silico analysis of mammalian metabolism. 
Genome-scale modeling of metabolism has become increasingly popular 
in recent years as it enables the study of metabolism and prediction of 
biological capabilities of a target organism at a systemic level. It has 
been widely used in a range of scientific, industrial and medical appli
cations, such as microbial production of chemicals, drug discovery, and 
human disease studies (Gu et al., 2019). 

We used recently published genome-scale reconstructions of Rattus 
norvegicus (iRno) and Homo sapiens (iHsa) (Blais et al., 2017) and applied 
constraint-based modeling (Heirendt et al., 2019). A genome-scale 
metabolic network reconstruction represents a standardized and struc
tured knowledge base of all known biochemical reactions in an organ
ism. By (1) systematically linking specific genes to the respective 
encoded enzymes and to the chemical reactions they catalyze, (2) 

mathematically describing the chemical reactions and (3) imposing 
genetic, physicochemical and environmental constraints, 
context-specific genome-scale models are created. These models can be 
used in combination with different constraint-based modeling methods 
to compute phenotypic states or biological capabilities as represented by 
metabolic flux distributions (Orth et al., 2010; Lewis et al., 2012). In 
large-scale metabolic networks, such as mammalian metabolic net
works, there are more reactions than there are metabolites with the 
result that there is no unique solution of flux distributions; redundant 
metabolic pathways may generate the same phenotype. Flux variability 
analysis (FVA) identifies all alternative solutions by determining the 
feasible flux ranges (minimum and maximum fluxes) for each reaction in 
the network. The actual flux state can only reside within this feasible 
solution space. 

Metabolic perturbations, such as gene knockouts, enzyme in
hibitions, reaction rate limitations, alternative feeding scenarios, can be 
simulated in silico by restricting or adapting the flux through the asso
ciated reactions. Such additional constraints further shrink the 
computable solution space and narrow the allowable flux ranges for all 
reactions in the network. In our in silico modeling approach, we address 
the following questions: (1) Is the applied in silico approach sensitive to 
metabolic perturbations of the respiratory chain complex? (2) What are 
the universal metabolic effects of SDH inhibition on mammalian meta
bolism? (3) Are SDHI fungicides expected to have comparable metabolic 
outcomes in rats and humans or are there relevant species differences in 
the network structure? (4) How is the human metabolism affected by 
SDH inhibition when challenged additionally by glucose deprivation? 

Thus, the objective of the work presented here was to characterize 
the metabolic changes resulting from in vivo exposure to the SDH in
hibitors boscalid and fluxapyroxad in rats, and to compare the findings 
both with hypothesized metabolic changes and with effect outcomes 
from in silico metabolic network predictions in rats and humans. 

2. Material and methods 

The plasma metabolome was measured in 28-day repeated dose 
studies in Wistar rats following the administration of two SDH inhibitors 
(Boscalid and Fluxapyroxad) and compared to untreated controls. For 
each dose group, five rats per sex were fed with a diet containing the 
individual SDH inhibitor. The top-dose level chosen in each study re
flected the 28-day maximum-tolerated dose of the SDH inhibitors. The 
blood samples were processed for mass spectrometry-based metabolome 
analysis. Both gas chromatography-mass spectrometry and liquid 
chromatography-MS/MS were used for broad analyte profiling of the 
polar and non-polar fractions of the samples. Data were normalized to 
the median of the metabolome data derived from (the) study control 
samples. 

2.1. Ethics statement 

The animal studies were approved by the BASF Animal Welfare Body 
and were performed according to the German Animal Welfare Act and 
EU Directive 2010/63, with the permission of the local authority, the 
Landesuntersuchungsamt Rheinland-Pfalz (permission numbers 23 177- 
07/G 07-3-001 and 23 177-07/G08-3-001). The laboratory is AAALAC 
(Association for Assessment and Accreditation of Laboratory Animal 
Care International) certified. 

2.2. Animal treatment, examinations and sampling 

Animal handling, compound treatment as well as clinical examina
tions have been described earlier (Kamp et al., 2012a,b; van Rav
enzwaay et al., 2007, 2012). Briefly, Wistar rats (CrI:WI(Han)) were 
supplied by Charles River, Germany and were approx. 70 days old at the 
beginning of the studies. The diet and drinking water were available ad 
libitum (except before blood sampling) and regularly assayed for 

Abbreviations 

BOS Boscalid 
FLX Fluxapyroxad 
GC-MS Gas chromatography coupled with mass spectrometry 
HD High dose 
LC-MS liquid chromatography coupled with mass spectrometry 
LD Low dose 
MIE molecular initiating event 
MOA Mode of action 
SDH(I) Succinate dehydrogenase complex II (inhibitor)  
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chemical contaminants and the presence of micro-organisms. There 
were 5 animals per sex per dose group and 10 animals per sex in the 
control group. The animals were treated with the test compounds on a 
daily basis for 28 days via the diet at dose levels of 6,000 ppm (high 
dose, HD) and 1,000 ppm (low dose, LD) for Fluxapyroxad (FLX) and 15, 
000 ppm (HD) and 5,000 ppm (LD) Boscalid in both studies (BOS-11 as 
well as (BOS-76). The dose levels were set based on available regulatory 
toxicity studies (Boscalid: FAO/WHO, 2008; Fluxapyroxad: FAO/WHO, 
2013). The compounds were produced by BASF with a purity of 99.8% 
for FLX and 95.7% for BOS-11, as well as 99.3% for BOS-76. 

All animals were checked daily for mortality and clinical signs. Food 
consumption was determined on study days 7, 14, 21 and 28. Body 
weight was determined before the start of the administration period in 
order to randomize the animals and on study days 0, 4, 7, 14, 21 and 28. 
Blood samples for metabolome analysis were taken by puncturing the 
retrobulbar venous plexus on study day 7, 14 and 28 from overnight 
fasted animals under isoflurane anesthesia and the obtained EDTA- 
plasma was covered with nitrogen and frozen at − 80 ◦C. At the end of 
the treatment period, the animals were sacrificed by decapitation under 
isoflurane anesthesia. 

2.3. MetaMap®Tox methodology 

2.3.1. Metabolite profiling (metabolomics) 
The plasma metabolome was examined by BASF metabolome solu

tions GmbH following proprietary sample work up using GC-MS and LC- 
MS/MS techniques as described in Montoya et al., 2014. Briefly, three 
types of mass spectrometry analysis were applied to all samples: GC-MS 
(gas chromatography-mass spectrometry) and LC-MS/MS (liquid 
chromatography-MS/MS) were used for broad profiling, as described in 
van Ravenzwaay et al. (2007). SPE-LC-MS/MS (Solid phase 
extraction-LC-MS/MS) was applied for the determination of catechol
amine and steroid hormone levels. Proteins were removed from plasma 
samples by precipitation. Subsequently polar and non-polar fractions 
were separated for both GC-MS and LC-MS/MS analysis by adding water 
and a mixture of ethanol and dichloromethane. For GC-MS analysis, the 
non-polar fraction was treated with methanol under acidic conditions to 
yield the fatty acid methyl esters derived from both free fatty acids and 
hydrolyzed complex lipids. The non-polar and polar fractions were 
further derivatized with O-methyl-hydroxylamine hydrochloride and 
pyridine to convert oxo-groups to O- methyl-oximes and subsequently 
with a silylating agent before analysis (Roessner et al., 2000). For LC-MS 
analysis, both fractions were reconstituted in appropriate solvent mix
tures. HPLC was performed by gradient elution using meth
anol/water/formic acid on reversed phase separation columns. Mass 
spectrometric detection technology was applied which allows target and 
high sensitivity MRM (Multiple Reaction Monitoring) profiling in par
allel to a full screen analysis (patent application 2003073464). For all 
metabolites, changes were calculated as the ratio of the mean of 
metabolite levels in individual rats in a treatment group relative to mean 
of metabolite levels in rats in a matched control group (time point, dose 
level, sex). The methods resulted in 183 semi-quantitative analytes, 162 
of which are chemically identified and 21 are structurally not 
elucidated. 

2.3.2. The MetaMap®Tox database 
MetaMap®Tox is a unique database of biochemical profiles from rat 

plasma and comprehensive pharmacological and toxicological data base 
of currently approximately 1,000 pharmaceuticals, chemicals and ag
rochemicals after 7, 14 and 28 days of test substance treatment. Meta
Map®Tox was used to evaluate the metabolome of the test compounds 
in terms of number and strength of metabolite changes, comparison to 
specific toxicity patterns as well as correlation analysis with other 
reference compounds in the data base. 

2.3.3. Statistics 
The data were analyzed by univariate and multivariate statistical 

methods. The sex- and day-stratified heteroscedastic t-test (Welch test) 
was applied to log-transformed semi-quantitative metabolite data to 
compare treated groups with respective controls. p-values, t-values, and 
ratios of corresponding group medians were collected as metabolome 
profiles and fed into MetaMap®®Tox). 

2.3.4. Pattern ranking 
Discriminating metabolite patterns for various toxicological modes 

of action (MoAs) were developed from the metabolite profiles in the 
MetaMap®Tox database. These metabolite patterns are usually based on 
the data from at least three different reference chemicals included in the 
MetaMap®Tox database which share a common toxicological mode of 
action (van Ravenzwaay et al., 2012). The pattern ranking itself is a 
two-step process. Firstly, an algorithm used in the database yields a 
ranking list based on similarity of the test compound metabolome profile 
compared to the specific patterns in MetaMap®Tox using a median r 
value metric. Secondly, the metabolite changes are evaluated by an 
expert panel of experienced toxicologists to determine what may be 
described as “confirmed” matches. Generally, based on the number of 
commonly changed metabolites, a clear match prerequisites approx. 
90% or more of metabolites significantly changed as defined by the 
pattern (weak matches: approx. 75–90%; equivocal findings: approx. 
50–75%; mismatches: <50%). Furthermore, the quality and importance 
of the metabolite changes for a certain toxicological mode of action is 
considered for this evaluation. 

2.3.5. Profile comparison 
The profile comparisons were conducted by calculating Welch t- 

values from treatment and control samples of each metabolite stratified 
by sex and time. By a pair-wise comparison the profiles (t-values) of the 
two treatments in question were compared with each profile available in 
the MetaMap®Tox database. These comparisons were quantified by 
calculating the parametric Pearson product moment correlation coeffi
cient. The similarity between the profiles of the compound under 
investigation and the compounds of the MetaMap®Tox database was 
ranked by the resulting correlation coefficients in descending order. A 
threshold value of 0.40 for male animals and 0.50 for female animals 
displays approximately the 95th percentile of all correlation coefficients 
obtained by the profile comparison. Correlation coefficients above these 
values are considered as indicating a match between two treatments 
(Mattes et al., 2013; van Ravenzwaay et al., 2015). 

2.4. In silico analysis in genome-scale metabolic models 

2.4.1. Methodology 
We used recently published metabolic reconstructions of Rattus 

norvegicus (iRno) and Homo sapiens (iHsa) (Blais et al., 2017). Experi
mental values of the 28-day rat in vivo studies (explained above) were 
imposed as physiological constraints to convert the genome-scale re
constructions into context-specific genome-scale models. Different types 
of metabolic perturbation (e.g. reaction knockout) were applied as 
additional constraints in several in silico test scenarios. Flux Variability 
Analysis (FVA) was performed to determine the ranges of allowable flux 
values. Finally, the consequences of different metabolic perturbations 
were qualitatively analyzed by comparing the computed ranges of flux 
distributions between different scenarios. A schematic overview of the in 
silico methodology and analysis test design is shown in Fig. 1. Details are 
explained in the following text. 

2.4.2. Constraint-based modeling 
The COBRA (COnstraint-Based Reconstruction and Analysis) toolbox 

3.0 (Heirendt et al., 2019) was used in the MATLAB (MATLAB R2019b, 
MathWorks) environment for constraint-based modeling. A Flux Vari
ability Analysis (FVA) was performed to determine the flux ranges 
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(minimum and maximum fluxes, [μmol/(g dry weight × h)]) which are 
feasible at the given constraints, according to the following COBRA 
function: 

[minFlux, maxFlux] = fluxVariability(fvamodel, 100, ’max’, 
rxnNameList); More detailed information on the method can be found in 
the COBRA toolbox manual (Heirendt et al., 2019) and in previous 
publications reviewing constraint-based modeling (O’Brien et al., 2015; 
Orth et al., 2010; Lewis et al., 2012; Price et al., 2004). Constraints are 
detailed in the following. 

2.4.3. Integration of experimental values from 28-day in vivo rat studies as 
basic model inputs 

Experimental values of rat body weights and food consumption from 
the 28-day in vivo studies with BOS and FLX were used to calculate 
weight gain rates (growth rates) [1/h] and food consumption rates [g 
food/(g rat dry weight × h)] for the 28-day study period (see Supple
mentary Table 1, Body Weights, Food Consumption, Weight Gain Rates, 
Feed Rates). Guidance for conversion from body weight to dry weight 
was taken from literature (Suckow et al., 2006). Considering a water 
content of rats of 68%, the dry weight was calculated as follows: 

dry weight [g] = 0.32 × body weight [g] 
Feed composition was taken from supplier information (KLIBA 

NAFAG, Maus und Ratte, 3433, GLP). Components in the feed were 
mapped to matching exchange reactions in the metabolic models (see 
Supplementary Table 1, Feed Exchange Mapping). 

Upper bounds of exchange fluxes [μmol/(g dry weight × h)] were 
calculated from food consumption rates and feed composition. Calcu
lation was differentiated by test compound (BOS (MoA11), FLX), dose 
level (control, low dose, high dose) and gender (female, male). This 
resulted in twelve distinct iRno models for in silico simulations of rat 
metabolism (see Fig. 1, model 1–12), each constrained by respective 
experimental values (Supplementary Table 1, Feed Constrained 
Models). 

The human metabolic model (iHsa) was constrained with averaged 
values from the rat studies in order to apply physiological constraints at 
comparable orders of magnitude for both rat and human in silico studies. 
Weight gain rates and feed consumption rates were averaged for study 
(BOS, FLX), SDHI dose level (low dose, high dose) and gender (female, 
male). This resulted in two different models for human in silico studies 
(see Fig. 1, model 13 and 14) differentiated by distinct weight gain rates 
and food consumption per condition (control, SDHI). 

2.4.4. Adaptation of feed constraints to simulate glucose deprivation 
We tested if the human metabolic network can be sustained without 

Fig. 1. Strategy for in silico analysis of metabolism in genome-scale models. Genome-scale network reconstructions of rat (iRno) and human (iHsa) metabolism 
were combined with physiological constraints from the 28-day rat in vivo studies (rat body weights, food consumption rates, feed composition), and additional 
artificial feeding scenarios simulating glucose deprivation, to create 18 different context-specific genome-scale metabolic models (see also Supplementary Table 1, 
Feed Constrained Models): model 1–6, representing the rat Boscalid (BOS) in vivo study, model 7–12, representing the rat Fluxapyroxad (FLX) in vivo study, and model 
13–18, applied for in silico analyses of human metabolism in glucose (GLC), amino acid (AA), or fatty acid (FA) feeding scenarios. Genome-scale models were applied 
in constraint-based modeling to compute phenotypic states, described by feasible metabolic flux distributions as determined by flux variability analysis (FVA). 
Diverse metabolic perturbations were tested and qualitatively compared with each other in four different in silico scenarios: (1) baseline, upper bound (ub) of SDH 
flux unconstrained (1000 μmol/(g dry weight × h)), (2) (complete) SDH inhibition, ub of SDH flux set to 0 μmol/(g dry weight × h), (3) KCN (Potassium cyanide) 
intoxication, ub of electron transport chain complex IV flux set to 0 μmol/(g dry weight × h), and (4) partial SDH inhibition ub of SDH flux set to 1, 10, or 100 μmol/ 
(g dry weight × h). 
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any glucose supply, solely fed by alternative carbon sources. For these 
test scenarios, we modified the feed constraints for the above described 
in silico model of human metabolism (iHsa) to contain no glucose as 
carbon source but elevated amounts of amino or fatty acids. In total, 
three different feeding scenarios were investigated, (1) GLC, which is 
equivalent to the experimental glucose containing feed (Fig. 1, model 13 
and 14), (2) AA, containing no glucose, but 2.5 times more amino acids 
compared to experimental feed (Fig. 1, model 15 and 16), and (3) FA, 
containing no glucose, but 3 times more fatty acids compared to 
experimental feed (Fig. 1, model 17 and 18) (Supplementary Table 1, 
Feed Constrained Models). 

2.4.5. Test scenarios for in silico simulation of succinate dehydrogenase 
inhibition in rat and human metabolism 

In the metabolic reconstructions iRno and iHsa, the succinate dehy
drogenase function is represented by two alternative reactions creating a 
loop if left unconstrained:  

- RCR11674, succinate dehydrogenase: FADH2 + fumarate = FAD +
succinate  

- RCR14481, electron transport chain II: fumarate + ubiquinol =
succinate + ubiquinone 

2.4.5.1. Scenario 1: baseline. For comparison with SDH inhibition sce
narios, baseline simulations were first performed. The reaction 
RCR14481 as one of the two alternative reactions was closed, i.e. no flux 
was allowed through this reaction by setting upper and lower bounds to 
zero. Only reaction RCR11674 was allowed to carry a flux, to transfer 
electrons and to convert fumarate into succinate. Scenario 1 as baseline 
simulation (avoiding circulation of carbons by an unconstrained loop) 
was applied to rat and human models constrained by experimental 
values of control groups (Fig. 1, models 1, 2, 7, 8, 13, 15, 17). 

2.4.5.2. Scenario 2: succinate dehydrogenase inhibition. For in silico 
simulation of succinate dehydrogenase inhibition, both reactions, 
RCR11674 and RCR14481, were set to zero flux, which is equivalent to a 
complete inhibition or a knockout of the succinate dehydrogenase 
function. Scenario 2 as SDH inhibition simulation was applied to rat and 
human models constrained by experimental values of fungicide treated 
groups (Fig. 1, models 3–6, 9–12, 14, 16, 18). 

2.4.5.3. Scenario 3: Potassium cyanide (KCN) intoxication vs. complete 
SDH inhibition. Network flexibility and robustness of mammalian 
metabolism was further investigated by additional scenarios testing 
different levels of perturbation of the respiratory chain. The metabolic 
effects of complete SDH inhibition, i.e. inhibition of electron transport 
chain complex II, were compared with the effects induced by a simulated 
KCN intoxication, i.e. inhibition of electron transport chain complex IV. 
A block of complex IV is indisputably considered a severe metabolic 
perturbance of mammalian metabolism. For this simulation, the reac
tion RCR21046 (electron transport chain IV: 8 H+ + O2 + 4 ferrocy
tochrome C → 2 H2O + 4 H++ 4 ferricytochrome C) was not allowed to 
carry a flux. 

2.4.5.4. Scenario 4: Complete vs. partial SDH inhibition (vs. baseline). 
Since complete inhibition of SDH is unlikely to happen in mammalian 
metabolism under more realistic conditions of low-level exposure to 
SDHI fungicides, we investigated three scenarios where the flux bounds 
of SDH are not set to zero, but only restricted to a flux of 1 μmol/(g dry 
weight × h), 10 μmol/(g dry weight × h) or 100 μmol/(g dry weight ×
h), representing different levels of partial SDH inhibition. 

In order to avoid an influence imposed by experimental values (e.g. 
variable food consumption rates), all simulations of scenario 3 and 4 
were applied to the same input model (Fig. 1, model 1). 

3. Results 

3.1. Bodyweight, food consumption and clinical findings 

Neither bodyweight nor food consumption were significantly altered 
in male or female animals due to the treatment with high (15,000 ppm) 
or low dose (5,000 ppm) levels for the BOS-11 and BOS-76 groups. The 
test substance intake at a dose level of 15,000 ppm is roughly equivalent 
to 1,200 mg/kg bw, the highest dose to be tested in 28-day OECD 
guideline 407 studies. For FLX at day 28 of the metabolome study, body 
weights for high dose (6,000 ppm) males were 14% lower than the 
controls, food consumption was reduced by 17%. For high dose females 
body weights were 5% and food consumption 12% lower, respectively. 
No changes in body weight were observed at the low dose (1,000 ppm) 
in both sexes. The test substance intake at a dose level of 6,000 ppm is 
equivalent to 480 mg/kg bw. There were neither mortalities, nor clinical 
signs of toxicity observed during the whole study duration for any of the 
treatment groups. 

3.2. In vivo metabolome assessment 

3.2.1. Significant metabolite changes 
In the supplementary table 2 the whole metabolome profiles of BOS- 

11, BOS-76 and FLX can be seen. 
Both Boscalid (BOS) and Fluxapyroxad (FLX) induced strong changes 

in the metabolite profile of male and female animals compared to the 
control (number of metabolites with significant changes four to five 
times above the false positive rate at p < 0.05 of 5%). The observed 
effects were more moderate for female rats at FLX treatments after 7-day 
treatment, as well as in male rats for the low level of BOS (5,000 ppm) 
after seven days of treatment (three-times increase of significantly 
changed metabolite numbers). 

Generally, for FLX and BOS, the changes found at the high dose were 
also observed at the low dose, however, the number of significantly 
changed metabolites was lower than for the high dose. 

For both compounds, BOS and FLX, consistent metabolite changes 
are found for increased levels of fatty acids as well as more complex 
lipids, e.g. (lyso-)phosphatidylcholines and sphingomyelins. In a few 
cases there were changes in the amino acid metabolism, e.g. increased 
levels of serine, glycine and threonine, histidine, ornithine as well as of 
branched chain amino acids (valine, leucine, isoleucine). These amino 
acids were mostly not changed or did lack statistical significance for 
BOS-11. Quite consistently 2-hydroxy butyrate was found to have lower 
metabolite levels compared to the control. Furthermore, glucuronic acid 
was increased consistently for both compounds at all dose levels 
(Table 1). 

3.2.2. Pattern evaluation 
The metabolite profiles of FLX and BOS were compared with patterns 

available in the MetaMap®Tox database (data not shown). The assess
ment for both BOS treatments yielded similar results and confirmed the 
liver and thyroid as target organs. Matches were observed with patterns 
for liver enzyme induction and for indirect thyroid effects (resulting 
from increased excretion of thyroid hormones due to liver enzyme in
duction) as well as liver toxicity in both sexes. Taken together, the data 
for both BOS treatments demonstrate robustness and reproducibility of 
the metabolome evaluation. 

The comparison of metabolite changes induced by FLX with the 
patterns in MetaMap®Tox also confirmed liver and thyroid as target 
organs through matches with liver enzyme induction, indirect thyroid 
effects (resulting from increased excretion of thyroid hormones due to 
liver enzyme induction), as well as liver toxicity in both sexes at the high 
dose treatment. 

3.2.3. Treatment correlation 
Based on whole metabolite profile correlation, the high dose 
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treatments of BOS-11 and BOS-76 are most similar to each other, with a 
correlation coefficient of 0.737 in males and 0.697 in females. In both 
sexes these correlation coefficients exceed the 99th percentile of all 
possible correlations. 

The high dose treatment of FLX with the two BOS treatments showed 
high similarity between FLX and BOS with correlation coefficients of 
0.641 (BOS-11) and 0.668 (BOS-76) in male animals and 0.594 (BOS-11) 
and 0.649 (BOS-76) in female animals. All correlation coefficients 
exceed the 99th percentile of all possible correlations, with the excep
tion of the comparison of FLX and BOS-11 in female animals, exceeding 
the 98th percentile. 

3.3. SDHI-related metabolome changes 

Table 2 shows the extent of tricarboxylic acid (TCA)-related metab
olite changes in rats treated with FLX or BOS. There were no consistent 
effects of the compounds on these metabolites. Overall, the fold-changes 
are low, and statistical significance was obtained only in a low number 
of occasions. Consequently, no pattern emerged from these data. For 
these changes, neither a dose-response relationship, nor consistency 
between the sexes was observed. Furthermore, in the case of the two 
studies with BOS, none of the effect changes were reproducible. 

3.4. In silico analysis of metabolism in genome-scale rat and human 
models 

We applied experimental values of rat in vivo studies as physiological 
constraints to create context-specific models of rat and human 

metabolism. Flux variability analysis (FVA) was used to determine the 
minimum and maximum flux values for each reaction upon different 
scenarios of metabolic perturbation. Selected results of flux distributions 
are presented in Fig. 2. The complete set of computation results can be 
found in the supplementary material (see Supplementary Table 2, FVA 
results). If a range of possible values for a reaction rate is computed, the 
actual in vivo flux rate is predicted to be within this feasible flux range. 
Variable reaction rates are expected for large-scale metabolic networks 
due to network redundancy and the existence of alternative pathways 
(O’Brien et al., 2015). Reactions of phosphofructokinase (PFK), succi
nate ligase (SUCLG), fumarase (FHc and FHm) and mitochondrial 
alanine aminotransferase (ALATm) had flux values with infinite bounds 
(− 1000, +1000) at all tested conditions (see Fig. 2). These reactions 
were unbounded as the applied constraints had no effect on the 
computed flux capacity of these reactions. However, most reactions in 
the intermediary metabolism were found to have variable flux values, 
(1) for models constrained by physiological data from male or female 
rats, and (2) at different conditions of metabolic perturbation; this in
dicates that these reactions are sensitive to the various applied 
constraints. 

3.4.1. Complete inhibition of succinate dehydrogenase has only minor 
effects on rat and human metabolism 

We compared the metabolic effects of a complete reaction knockout 
of succinate dehydrogenase (low dose or high dose for rat metabolism, 
SDHI for human metabolism, see Fig. 1, scenario 2) with the flux dis
tributions obtained at baseline condition (control, see Fig. 1, scenario 1) 
both in rat and human metabolic models. Since previous results of Bénit 

Table 1 
Amino acid, ornithine, hydroxybutyrate and glucuronic acid changes in rats treated with FLX or BOS (bold 
numbers indicate a statistically significant change, whereby yellow colour indicates a statistically significant 
decrease, red colour a statistically significant increase at p < 0.05; f: female; m: male; 28 indicates the treat
ment period in days). 

Table 2 
Tricarboxylic acid (TCA)-related metabolite changes in rats treated with FLX or BOS (bold numbers indicate a 
statistically significant change, whereby yellow colour indicates a statistically significant decrease, red colour a 
statistically significant increase at p < 0.05; f: female; m: male; 7, 14, 28 indicate the treatment period in days). 
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et al. suggested that fatal effects of SDHI fungicides in human cell culture 
are only evident if cells were also deprived of glucose, we additionally 
tested the metabolic capabilities of the human network at SDH inhibi
tion without glucose supply in two different in silico scenarios feeding 
amino acids (AA feed) or fatty acids (FA feed) as alternative carbon 
sources instead of glucose. 

Results obtained for simulations with the rat metabolic models (see 
Fig. 2A, BOS and FLX) and the human metabolic models (see Fig. 2B, 
GLC, AA, FA) were consistent and no noticeable differences were 
observed between both species. 

Only few metabolic reactions were found to have substantially 
smaller flux capacities at inhibition of SDH compared to the control 
condition. At baseline conditions, the pyruvate dehydrogenase (PDH) 
reaction was unbounded (infinite value of +1000), while with complete 
SDH inhibition the highest feasible flux values was bounded and ranged 
between 78 and 123 μmol/(g dry weight × h) (Fig. 2A and B). Upper flux 
values of the different isoenzymes of the isocitrate dehydrogenase (IDH) 
reaction were reduced to about 30% or 60% of the flux ranges deter
mined at baseline conditions (Fig. 2A and B). Summed up, the reactions 
converting isocitrate to alpha-ketoglutarate (AKG) showed a maximum 
flux capacity between 703 and 902 μmol/(g dry weight × h) at control 
conditions and between 188 and 261 μmol/(g dry weight × h) for a 
reaction knockout of succinate dehydrogenase. Flux ranges in the 
oxidative branch of the pentose phosphate pathway (Phosphogluconate 
dehydrogenase, PGDH) were reduced to 40% of the baseline flux ranges 
(upper flux values 205–254 vs. 494–601 μmol/(g dry weight × h) 
(Fig. 2A) or to 30% when no glucose was supplied as an additional 
metabolic challenge in the amino acid feed (AA feed) and fatty acid feed 
(FA feed) scenarios (157–181 vs. 543–554 μmol/(g dry weight × h) 
(Fig. 2B). Maximum flux capacities of beta-oxidation reactions were 
reduced to 50–75% at SDH inhibition compared to the control condition 
(Fig. 2A and B, shown is reaction RCR12716 (palmitoyl-CoA dehydro
genase) as a representative example 298–367 vs. 437–598 μmol/(g dry 
weight × h)). 

For most parts of the intermediary metabolism, including e.g. ana
plerotic reactions (e.g. malic enzyme ME, phosphoenolpyruvate car
boxykinase PEPCK) and reactions of complex I, III and IV of the 
respiratory chain (ETC I, III and IV), the impact of an SDH reaction 
knockout was negligible. Flux ranges were not substantially reduced 
compared to the baseline condition. No reaction was found to be 
completely blocked, i.e. not able to carry a flux. Notably, the ATP syn
thase reaction was neither affected by SDH inhibition, nor by feeding of 
alternative carbon sources as indicated by identical flux ranges for 
control conditions, BOS and FLX rat studies (Fig. 2A), and human studies 

at different feeding test scenarios (GLC, AA feed, FA feed) (Fig. 2B). 

3.4.2. Impairment of energy metabolism by simulated complex IV inhibition 
(e.g. via KCN treatment) causes universal effects on mammalian metabolism 

In addition, we compared the flux distributions of a complete SDH 
inhibition (Fig. 1, scenario 2) with an indisputably more severe meta
bolic perturbation of the respiratory chain, i.e. inhibition of respiratory 
chain complex IV, mimicking an intoxication with KCN (Fig. 1, scenario 
3). In contrast to the minor effects of SDH inhibition (block of complex 
II), a block of complex IV resulted in a substantial reduction of flux 
ranges for most reactions in the rat metabolic network, including fluxes 
of the central carbon metabolism and energy metabolism, anaplerotic 
reactions and fatty acid metabolism (Fig. 2C, KCN). The respiratory 
chain complex III reaction (Fig. 2C, ETC III) was completely blocked and 
therefore dysfunctional (KCN, 0 μmol/(g dry weight × h)) in contrast to 
maximum flux values of 586 μmol/(g dry weight × h) for SDH/complex 
II inhibition (SDH ub 0) and of 720 μmol/(g dry weight × h) at baseline 
condition (SDH ub 1000). The flux capacity of complex I (Fig. 2C, ETC I) 
was reduced to 80 μmol/(g dry weight × h) (KCN) compared to upper 
flux bounds of 552 and 677 μmol/(g dry weight × h) for SDH inhibition 
(SDH ub 0) and baseline conditions (SDH ub 1000), respectively. Flux 
capacity of the ATP synthase reaction (Fig. 2C, ATP synthesis) was 
reduced to 82 μmol/(g dry weight × h) at complex IV inhibition (KCN), 
while ATP synthesis was neither restricted at baseline conditions (SDH 
ub 1000) nor at complete SDH inhibition (SDH ub 0). 

3.4.3. Partial inhibition of succinate dehydrogenase results in a partial 
rescue of the baseline metabolic state indicating dose-dependent metabolic 
effects 

The flux distributions of different levels of simulated SDH inhibition 
allowing fluxes of 1, 10 or 100 μmol/(g dry weight × h) (Fig. 1, scenario 
4) were compared to flux ranges resulting from complete SDH inhibition 
(upper bound 0 μmol/(g dry weight × h)) (Fig. 1, scenario 2) and with 
the baseline control condition (upper bound 1000 μmol/(g dry weight ×
h)) (Fig. 1, scenario 1) (Fig. 2C). These simulations were performed with 
input model 1 (BOS/female/control) for all test conditions (baseline, 
partial and complete SDH inhibition). A partial inhibition resulted in 
effects similar to those of complete inhibition of SDH, yet to a lesser 
extent. In most cases, the flux distributions did not differ between the 
baseline conditions and an allowed SDH flux of 100 μmol/(g dry weight 
× h). 

Fig. 2. Metabolic flux maps depicting feasible flux distributions [μmol/(g dry weight £ h)] for in silico simulations of different metabolic perturbations. 
(A) BOS – Boscalid in silico rat study, FLX – Fluxapyroxad in silico rat study. Physiological constraints derived from rat in vivo studies. Baseline scenario 1 (control) vs. 
SDH inhibition scenario 2 (low dose, high dose). (B) Three different in silico feeding scenarios in human metabolism: GLC – Glucose feed, identical to feed 
composition of rat in vivo study, AA – Amino acid feed (amino acids of in vivo feed composition × 2.5, no glucose supply), FA – Fatty acid feed (fatty acids of in vivo 
feed composition × 3, no glucose supply). Physiological constraints derived from rat in vivo studies, averaged for SDHI fungicide compounds, SDHI fungicide dose 
level, and gender. Baseline scenario 1 (control) vs. SDH inhibition scenario 2 (SDHI). (C) Comparison of different in silico metabolic perturbations of the respiratory 
chain in rat metabolism. Physiological constraints of group Boscalid/control/female (Fig. 1, model 1) from rat in vivo studies. Baseline scenario 1 (SDH upper bound 
(ub) 1000) vs. partial SDH inhibitions in scenario 4 (SDH ub 100, SDH ub 10, SDH ub 1) vs. complete SDH inhibition scenario 2 (SDH ub 0) vs. KCN intoxication 
scenario 3 (KCN, i.e. complete inhibition of respiratory chain complex IV). Abbreviations:, BOS – Boscalid, FLX – Fluxapyroxad, GLC – Glucose, AA – Amino acid, FA – 
Fatty acid, SDH ub – Succinate Dehydrogenase flux upper bound, KCN - Potassium cyanide, PEP – Phosphonenolpyruvate, AcCoA – Acetyl-Coenzyme A, OAA – 
Oxaloacetate, AKG – Alpha-KetoglutaratePFK - Phosphofructokinase, PGDH – Phosphogluconate dehydrogenase, PDH – Pyruvate dehydrogenase, LDH – Lactate 
dehydrogenase, CS – Citrate synthase (Note: the Citrate synthase equation is defined in opposite direction in the metabolic reconstructions, flux results have been 
reversed here for easier interpretation), IDHNAD – NAD-dependent isocitrate dehydrogenase, IDHNADP - NADP-dependent isocitrate dehydrogenase, IDHmNADP - 
mitochondrial NADP-dependent isocitrate dehydrogenase, IDHcNADP - cytosolic NADP-dependent isocitrate dehydrogenase, SUCLG – Succinate ligase, SDH – 
Sucinate dehydrogenase, FHc – cytosolic fumarase, FHm – mitochondrial fumarase, MDHc – cytosolic malate dehydrogenase, MDHm – mitochondrial malate de
hydrogenase, ETC I – electron transport chain complex I, ETC II – electron transport chain complex II, ETC III – electron transport chain complex III, ETC IV – electron 
transport chain complex IV, MEmNAD - mitochondrial NAD-dependent malic enzyme, MEmNADP- mitochondrial NADP-dependent malic enzyme, MEcNADP- 
cytosolic NADP-dependent malic enzyme, PEPCKc - cytosolic Phosphoenolpyruvate dehydrogenase, PEPCKm - mitochondrial Phosphoenolpyruvate dehydrogenase, 
PCX – Pyruvate carboxylase, ASATc – cytosolic aspartate aminotransferase, ASATm – mitochondrial aspartate aminotransferase, ALATc – cytosolic alanine 
aminotransferase, ALATm. – mitochondrial alanine aminotransferase, CL – citrate lyase, betaOx – beta-Oxidation (Note: shown are the flux results for the palmitoyl- 
CoA dehydrogenase reaction (RCR12716). 
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Fig. 2. (continued). 
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Fig. 2. (continued). 
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3.4.4. The human metabolic network is fully sustained upon SDH inhibition 
despite glucose deprivation 

Only positive values for the glucose exchange flux (Fig. 2, Glucose 
exchange) were observed in glucose deprived scenarios where amino 
acids (Fig. 2B, AA feed) or fatty acids (Fig. 2B, FA feed) are fed as major 
carbon sources, indicating an obligatory glucose excretion when no 
glucose was available in the feed. In addition, the capacity for glucose 
excretion was elevated compared to a scenario with glucose supply 
(Fig. 2B, GLC feed). The metabolic capabilities of the human metabolic 
network were fully sustained, both at baseline (Fig. 2B, control, scenario 
1) and SDH inhibition Fig. 2B, SDHI, scenario 2) conditions, even when 
no glucose was available in the feed. 

4. Discussion 

COnstraint-Based Reconstruction and Analysis (COBRA) of genome- 
scale models can be used to predict the consequences of genetic and 
environmental perturbations at a systemic level (O’Brien et al., 2015; Gu 
et al., 2019). We applied comprehensive genome-scale metabolic 
modeling to evaluate biological capabilities of rat and human to cope 
with SDH enzyme inhibition. Mammalian metabolism is characterized 
by network redundancy and the existence of alternative pathways. Flux 
Variability Analysis (FVA) can quantify this variability by determining 
the flux boundaries of this feasible range (Orth et al., 2010; O’Brien 
et al., 2015). The steady state flux distributions within this range 
represent the metabolic capabilities of the target organism at the given 
constraints and give an indication regarding network flexibility, 
robustness and vulnerabilities. Constraint-based modeling approaches 
have limitations. Metabolite concentrations and regulatory effects (e.g. 
feedback mechanisms, allosteric modifications, etc.) cannot be pre
dicted. Metabolic network reconstructions will inevitably contain 
knowledge gaps and must be regarded as simplified representations of in 
vivo biological systems (Orth et al., 2010). In our study, the applied 
experimental data which were imposed as physiological constraints on 
the models, resulted in wide feasible flux ranges. Therefore, additional 
constraints (e.g. based on transcriptomics data, quantitative metab
olomics data, enzyme assay measurements etc.) will shrink the solution 
space and allow for more precise predictions based on models that are 
more specific to the studied condition. However, even an imprecisely 
known flux space is usually sufficient for comparative analyses and 
qualitative assessments (O’Brien et al., 2015) and the distinct results 
obtained for the various different perturbations indicate that the ma
jority of reactions was sensitive to the applied physiological constraints. 

We used this in silico approach as a computational tool for contex
tualizing and understanding experimental data from rat as a model or
ganism within the context of human biology. No noticeable differences 
were found between both species for the metabolic capabilities relevant 
to the studied effects. The metabolic reconstructions of Rattus norvegicus 
(iRno) and Homo sapiens (iHsa) used in our study have been specifically 
created and reconciled for comparative rat versus human metabolism 
analyses, particularly in the context of systems toxicology applications 
(Blais et al., 2017). The quality of these reconstructions has been 
show-cased by accurately capturing known species-specific differences 
in physiological functions. On the other hand, the highly conserved 
metabolic functionality between rat and human genome-scale metabolic 
networks has been highlighted in the original publication as well (Blais 
et al., 2017). The results of the previous publication together with our 
findings indicate that the rat is an appropriate test organism for evalu
ating the toxicity of SDHI fungicides. Transferability of results between 
rats and humans seem justified for perturbations in the central 
metabolism. 

Metabolic perturbations, such as inhibition of the enzyme SDH, can 
be simulated in silico by restricting flux through the associated reactions. 
We found that SDH inhibition has only minor effects on the flux distri
butions in the rat and human metabolic networks. Notably, the absence 
of any effect on the ATP synthesis function indicates that the energy 

metabolism is not affected even upon complete SDH inhibition. These 
findings were rather surprising, given the fact that SDH is a key reaction 
of central metabolism as part of both the respiratory chain and the TCA 
cycle. Reduced flux ranges resulting from SDH inhibition were partic
ularly found for decarboxylating reactions (namely pyruvate dehydro
genase, isocitrate dehydrogenase, phosphogluconate dehydrogenase). 
Based on these observations, one could speculate that SDH inhibition 
might limit the capabilities for carbon loss in form of CO2 liberation, 
forcing the network to operate at a higher carbon-efficiency. A simulated 
partial inhibition of SDH resulted in similar, yet more moderate effects 
compared to a complete SDH inhibition, indicating a dose-dependent 
effect and a partial or in some cases complete restoration of the base
line flux ranges. 

In contrast to the moderate effects of SDH inhibition, both in terms of 
number of affected reactions and severity (extent of flux range reduc
tion), a simulated complex IV inhibition (e.g. as mediated by a KCN 
intoxication) caused significantly reduced flux ranges for most meta
bolic reactions, and particularly impaired energy metabolism. The 
substantial effects observed for the simulated KCN scenario additionally 
suggest that the applied in silico approach is indeed sensitive and suffi
cient to capture effects induced by metabolic perturbations of the res
piratory chain complex. 

We found no evidence that the human metabolism is particularly 
sensitive to SDH inhibition upon glucose deprivation. Our results indi
cate that the human metabolism can be fully sustained even without 
glucose intake, solely fed by different alternative carbon sources (amino 
acids, fatty acids), owing to a fully functional gluconeogenesis with 
concomitant glucose excretion into the extracellular environment. 
Therefore, it cannot be excluded that the specific sensitivities observed 
for the fibroblast cell culture study (Bénit et al., 2019) were an artefact 
of the in vitro experimental setting, while this sensitivity will probably 
not occur at organism level. 

Flux Variability Analysis is often used to determine robustness and 
flexibility of biochemical reaction networks under different environ
mental and genetic conditions. The method is used to describe metabolic 
potential as well as limitations and can elucidate possible metabolic side 
effects that may not be immediately obvious when considering targeted 
interventions, such as the inhibition of a single metabolic enzyme, in 
isolation from the surrounding network. The consideration of metabolic 
side effects is particularly relevant when metabolic reactions are 
affected that are interconnected with generic metabolic functions, such 
as intermediary metabolism, energy generation, or redox balance. 
Although SDH is a key reaction in mammalian central carbon, redox and 
energy metabolism, our findings indicate that its inhibition is not ex
pected to have severe effects on the metabolic phenotype. This may be 
explained by the fact that large-scale mammalian metabolic networks 
are characterized by a remarkable pathway redundancy, which in
creases flexibility and sustains fitness of the biological system under 
varying conditions (O’Brien et al., 2015). We conclude that rat and 
human metabolism show robustness at various metabolic challenges, 
including SDH inhibition with or without glucose deprivation. Potential 
limitations of the TCA cycle can be most likely compensated by various 
anaplerotic reactions which were not affected by SDH inhibition, and 
potentially by shifting the metabolic state to a more carbon-efficient 
operation mode. 

The good concordance between the two studies with BOS confirms 
the robustness and reproducibility of the metabolomics technology 
employed in these studies, as previously reported by Kamp et al., 2012a, 
b. This is indicated by the large number of commonly regulated me
tabolites, but also by the high Pearson correlation coefficient between 
the two treatments (>99th percentile of all possible correlations in the 
data base MetaMap®Tox) with no other treatments correlating better. 
Finally, the common effects identified through the comparison with 
patterns in the data base MetaMap®Tox shows the similarity of the two 
BOS treatments. 

The in vivo plasma metabolome of FLX- and BOS-treated animals 
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show a significant number of similarities. Both compounds increased the 
concentration of metabolites related to the fatty acid metabolism and 
beta-oxidation pathways. Interestingly, the in silico analyses revealed a 
lower maximum capacity for beta-oxidation reactions at SDH inhibition 
which is consistent with these in vivo metabolome findings. In addition, 
several triacyl-glycerides as well as a few phosphatidyl biosynthesis 
related metabolites were found at higher levels at FLX- and BOS- 
treatment. Such changes in fatty acids and complex lipids are often 
detected in rat studies with compounds that have effects on the liver (e. 
g., through liver enzyme induction or liver toxicity, van Ravenzwaay 
et al., 2010). Noteworthy, glucuronic acid was increased consistently for 
FLX and BOS in both sexes at both dose levels. Glucuronic acid is the 
precursor of the phase II reaction named glucuronidation which uses 
activated UDP-glucuronic acid as coupling reagent to increase the 
excretion of xenobiotic metabolites, but also endogenous compounds 
such as thyroid hormones (Marquadt et al., 1999). This increase in 
glucuronic acid is in line with the observation that the plasma metab
olome changes of both compounds match with metabolome patterns 
typical for liver enzyme induction as well as indirect thyroid effects 
(resulting from increased excretion of thyroid hormones due to liver 
enzyme induction). Liver enzyme induction has indeed been observed in 
the repeated oral dose studies in rats conducted with FLX and BOS for 
regulatory purposes (FAO/WHO 2008, 2013). 

As a consequence of SDH inhibition, one would expect changes in 
energy-related metabolites, especially those involved in the TCA cycle. 
However, in the plasma metabolome of rats, there were neither consis
tent effects on malate, citrate and succinate levels in any FLX- and BOS- 
treated dose group, nor on other energy metabolism-related metabolites, 
such as pyruvate or lactate. Overall, the changes relative to controls of 
these metabolites were low and mostly not statistically significant. 
Furthermore, neither a dose-response relationship, nor consistency be
tween the sexes was observed. In the case of the two studies with BOS, 
effects on these metabolites were not reproducible. Thus, with respect to 
the fungicide mode of action of both compounds – SDH inhibition – 
which plays a prominent role in the TCA cycle and the interconnected 
electron transport chain, there was an absence of any consistent change 
in any of the treatment groups, indicating a fully functional TCA cycle in 
the mitochondria. This is in line with the results from our in silico 
approach. In in vitro experiments carried out by Bénit et al. (2019) 
observed reduced cell viability in response to SDHI fungicide exposure, 
= was considered by the authors to reflect mitochondrial toxicity. 
However, such effects were obtained only under cell culture conditions 
that prevented glycolysis (using cell culture medium that lacked glucose, 
pyruvate and uridine and contained glutamine as sole carbon source). 
These exposure conditions and scope of investigations differed in 
important aspects from recently published cell culture experiments of 
the EU-ToxRisk project, which investigated the effects of mitochondrial 
targeting agrochemicals, including five SDH inhibitors, on HepG2 and 
RPTEC/TERT1 cells using a battery of tests (van der Stel et al., 2020). 
The tested Complex II inhibitors had no notable effects on viability, 
lactate production, mitochondrial membrane potential, extracellular 
acidification and oxygen consumption rates in intact cells exposed for 
24 h to up to 10 μM of the investigated chemicals. Exposures were 
carried out either in the presence of glucose or using galactose as 
replacement. The absence of notable mitochondrial toxicity by Complex 
II inhibitors, with no evidence for decreased ATP production, evidence 
for lactate accumulation or lactate acidosis, are fully in line with the 
scenario outcome predictions of our in silico analyses that considered 
complete or partial inhibition of SDH in the absence of glucose supply, 
and to the results of the metabolome profile of rats following exposure 
up to 28 days to the SDH inhibitors boscalid and fluxapyroxad. 

Results of respiration and membrane potential assays as reported 
(van der Stel et al., 2020) indicated a slight (non-significant) tendency of 
compensatory mechanisms at complex II inhibition and we also con
tained hints of compensation effects. We observed higher plasma levels 
of several amino acids in our in vivo metabolome studies. Different 

amino acids such as branched chain amino acids or threonine can be 
catabolized to succinyl-CoA and feed carbons into the TCA cycle (Michal 
and Schomburg, 2012). Higher plasma levels found for isoleucine, 
valine and threonine at BOS and FLX treatment compared to controls 
suggest that carbon input at the point of succinate/succinyl-CoA into the 
TCA cycle is controlled by reducing the expensive catabolism of these 
essential amino acids. 2-hydroxy butyrate, a side product of threonine 
degradation, was found to be consistently decreased through treatment 
with FLX and BOS, supporting this hypothesis. In addition, the results of 
the in silico analysis also hint at a compensation mechanism by shifting 
the metabolism to higher efficiency as explained above. 

The multitude of different pathways and cellular functions where 
succinate is involved requires holistic approaches to study SDHI effects, 
such as genome-wide metabolic modeling or in vivo studies. Recent 
studies reviewing the multifaceted roles of succinate as a metabolite and 
signaling molecule additionally highlight the fact that dynamic ranges of 
both SDH activity and succinate levels are physiological and influenced 
by various conditions (Guo et al., 2020; Tretter et al., 2016). This ex
plains the high metabolic flexibility to adjust for changes in succinate 
and SDH activity levels. 

A sound basis for extrapolating expected effects in humans from 
rodent toxicity studies is provided by complementary approaches that 
combine (1) SDHI-induced in vivo metabolome changes in rats, (2) 
comparison of SDH inhibition effects in both rat and human metabolism 
in silico, as well as (3) different what-if scenarios tested in silico to 
describe the range of flexibility and limitations in mammalian metabolic 
networks. 

Due to the reconciliation of the rat and human metabolic models it is 
possible to compare the responses to SDH inhibition of rat and human in 
silico. As no noticeable differences were found between both species, the 
rat appears to be an appropriate test organism for toxicity of SDHIs. 

In conclusion, the in vivo analysis indicated that fungicidal mode of 
action of both compounds, i.e. inhibition of SDH activity, does not result 
in a notable change in succinate or lactate levels. The most likely reason 
for this is, as shown in the flux variability analysis, the existence of 
multiple biochemical pathways that can substitute for reduced SDH 
activity and maintain biochemical homeostasis. 

Credit author statement 

H. Kamp: methodology, formal analysis, investigation, writing – 
original draft, visualization. 

J. Wahrheit: methodology, software, formal analysis, data curation, 
writing – original draft, visualization. 

S. Stinchcombe: conceptualization, writing – original draft, review 
& editing. 

T. Walk: formal analysis, investigation, data curation, writing – re
view & editing 

F. Stauber: conceptualization, writing – review & editing. 
B. v. Ravenzwaay: conceptualization, formal analysis, writing – 

review & editing, supervision. 

Declaration of competing interest 

All authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
The authors are employees of BASF, a chemical company developing, 
producing and marketing chemicals including SDHI compounds. Dr. 
Wahrheit is an employee of BASF, a chemical company developing, 
producing and marketing chemicals including SDHI compounds. 

Acknowledgements 

This work has been funded by BASF. 

H. Kamp et al.                                                                                                                                                                                                                                   



Food and Chemical Toxicology 150 (2021) 112085

13

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.fct.2021.112085. 

References 

Bénit, P., Kahn, A., Chretien, D., Bortoli, S., Huc, L., Schiff, M., Gimenez-Roqueplo, A.-P., 
Favier, J., Gressens, P., Rak, M., et al., 2019. Evolutionarily conserved susceptibility 
of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the 
impact of SDHIs on human cultured cells. PloS One 14, e0224132. https://doi.org/ 
10.1371/journal.pone.0224132. 

Blais, E.M., Rawls, K.D., Dougherty, B.V., Li, Z.I., Kolling, G.L., Ye, P., Wallqvist, A., 
Papin, J.A., 2017. Reconciled rat and human human metabolic networks for 
comparative toxicogenomics and biomarker predictions. Nat. Commun. 8, 14250. 
https://doi.org/10.1038/ncomms14250. 

FAO/WHO, 2008. Food and agriculture organization of the united nations, world health 
organization, FAO panel of experts on pesticide residues in food and the 
environment & WHO core assessment group on pesticide residues. In: (2008). 
Pesticide Residues in Food : 2006, Toxicological Evaluations, Sponsored Jointly by 
FAO and WHO, with the Support of the International Programme on Chemical 
Safety, Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and 
the Environment and the WHO Core Assessment Group, Rome, Italy, 3-12 October 
2006. World Health Organization. Part 2, Toxicological. https://apps.who.int/iris 
/handle/10665/43822. 

FAO/WHO, 2013. FAO Panel of Experts on Pesticide Residues in Food and the 
Environment, WHO Core Assessment Group on Pesticides Residues & Joint Meeting 
of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and 
the WHO Core Assessment Group on Pesticide Residues, Rome, Italy, 11-20 
September 2012. Pesticide residues in food - 2012: toxicological evaluations. World 
Health Organization, 2013. https://apps.who.int/iris/handle/10665/85391. 

Gu, C., Kim, G.B., Kim, W.J., Kim, H.U., Lee, S.Y., 2019. Current status and applications 
of genome-scale metabolic models. Genome Biol. 20 (1), 121. https://doi.org/ 
10.1186/s13059-019-1730-3. 

Guo, Y., Cho, S.W., Saxena, D., Li, X., 2020. Multifaceted actions of succinate as a 
signaling transmitter vary with its cellular locations. Endocrinol. Metab. (Seoul) 35 
(1), 36–43. https://doi.org/10.3803/EnM.2020.35.1.36. 

Hederstedt, L., 2003. Complex II is complex too. Science 299, 671. https://doi.org/ 
10.1126/science.1081821. 

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S.N., Richelle, A., Heinken, A., 
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